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It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein

(LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and

constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al.,

Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code

that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys.

Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in

Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in

the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within

the limits of numerical resolution. Tests of the orthogonality and the completeness relation are

presented. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789882]

I. INTRODUCTION

The problem of kinetic damping of plasma waves in a

Maxwellian plasma is one of the most fundamental concepts

in plasma physics. It is well known that Landau-damped sol-

utions1 are not true eigenmodes. The true eigenmodes for a

collisionless plasma were obtained by Van Kampen2 and

Case.3 The Case-Van Kampen modes constitute a continuous

spectrum, which correspond to the infinite number of degrees

of freedom of the system. At this level of description, each

particle is considered to move independent of any effects

from surrounding particles, and there is no coupling. In most

situations of physical interest where the initial conditions

are smooth, a broad and continuous spectrum of Case-Van

Kampen modes is excited. The Landau-damped solutions

emerge, in the long-time limit, as remnants due to the inter-

ference of the continuous spectrum of singular Case-Van

Kampen eigenmodes.

Lenard and Bernstein (LB)4 reconsidered the kinetic

problem using an operator of the Fokker-Planck type.5 They

obtained an exact analytic solution with a dispersion relation

that formally yields the Landau root in the limit of zero colli-

sions. However, they did not discuss the nature of the spec-

trum or address the issue of completeness of the eigenmodes

in the presence of collisions. In retrospect, this appears a bit

surprising because one of the important features of the

Lenard-Bernstein collision operator, unlike the Bhatnagar-

Gross-Krook (BGK) collision operator,6 is that, in the limit

of zero collision, it leads to a problem in singular perturba-

tion theory in velocity space. While both BGK and LB oper-

ators produce the Landau solution in the limit of zero

collision, the impact on the spectrum is profoundly different

in the case of the LB operator, which arguably is more physi-

cal than the BGK operator.

The most recent and direct impetus for theoretical stud-

ies on the nature of the kinetic spectrum in the presence of

weak collisions have come from the remarkable experiments

and analyses of Skiff and co-workers,7,8 who used laser-

induced fluorescence techniques to measure perturbed ion

distribution functions in a stable plasma at unprecedented

levels of accuracy (by two orders of magnitude compared

with previous measurements). They offered the important

insight that the linear eigenmode spectrum in the presence of

weak collisions is intrinsically discrete. While the Vlasov

description smoothens particle discreteness to form a contin-

uous kinetic fluid in phase space and allows particles to

move essentially independent of each other except through

their role in collectively supporting a self-consistent electric

field, binary collisions, embodied in the Fokker-Planck or

the LB operator, introduce particle discreteness in the prob-

lem, leading to the emergence of a discrete spectrum from

the continuum modes. While the transformation of continu-

ous spectra to discrete spectra behavior has been known to

occur in strongly collisional systems that obey fluid equa-

tions (such as hydrodynamics or resistive MHD equations),

the weakly collisional kinetic problem has not received the

attention it deserves. Following the work of Skiff and co-

workers, Ng, Bhattacharjee, and Skiff (NBS),9,10 demon-

strated that in the presence of weak collisions, the singular

Case-Van Kampen continuous spectrum is completely elimi-

nated and replaced by a discrete and smooth spectrum of

eigenmodes which, furthermore, constitute a complete set.

The Landau-damped solutions emerge as true eigenmodes of

the weakly collisional theory in the limit of zero collision.9

From the discussion above, it is apparent that the intro-

duction of collisions in a collisionless kinetic continuum
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model raises several interesting questions of principle, im-

portant for theory as well as experiments, which need to be

tackled analytically as well as numerically. Reliable compu-

tational tools are needed to check the results obtained by

linear analysis, as well as their extension into the nonlinear

regime. For example, there has been a controversy as to

whether the discrete spectrum of eigenmodes obtained by

NBS is complete10 or whether the complete spectrum con-

sists of a discrete as well as a continuous part.11 As dis-

cussed in Refs. 9 and 10, the answer to the question has

important implications on the long-time decay of plasma

wave echoes in weakly collisional plasma. Apart from the

fundamental interest in the weakly collisional theory, there

are also numerical issues involved in introducing collisions

in continuum models. These include the effect of collisions

on numerical recursion phenomena as well as the produc-

tion of entropy.

The main goal of this paper is to present numerical

results on some of the problems identified above from a ki-

netic Eulerian code in 1d-1v space (that is, phase space con-

sisting of one spatial coordinate, x, and one velocity space

coordinate, v) that includes the LB collision operator. We

describe the code, hereafter referred to as the kinetic code,

in Sec. II. In Sec. II E, we report on some standard tests of

the code and compare the predictions of the code in the

presence of collisions with the linear eigenmode analysis of

NBS. In Sec. III, we discuss our effort in testing the com-

pleteness relation of NBS eigenmodes, which is a signifi-

cant numerical challenge. We conclude in Sec. IV with a

summary.

Before we conclude this section, we remark on the

choice of the LB collision operator as a focal point of our

earlier analysis as well as the computations reported in this

paper. As discussed in the original paper by Lenard and

Bernstein (1958), the LB operator is a highly simplified ver-

sion of the Fokker-Planck collision operator in which the

collision frequency is assumed to be constant, instead of

exhibiting the more physically realistic velocity dependence

proportional to v�3. However, the LB operator does respect

particle and momentum conservation laws and adheres to the

H-theorem. The conservation properties of the LB operator

are addressed and improved upon by Dougherty,12 who

includes additional terms to satisfy momentum as well as

energy conservation laws for both drifting and non-drifting

distributions. The eigenmodes of the Dougherty collision op-

erator have been obtained by Anderson and ONeil13,14 and

are shown to be discrete, which would appear to be qualita-

tively consistent with our own results. However, this result

should be treated with some caution because the demonstra-

tion in Ref. 14 does not incorporate the self-consistent Pois-

son equation. Despite the limitations of the LB operator, it

has at least two attributes that make it a valuable intermedi-

ate step before the full Fokker-Planck operator is used. First,

it captures qualitatively the property of drag and diffusion in

velocity space that is analytically as well as numerically trac-

table. Second, it has already proved to be valuable in the

interpretation of experiments described in Refs. 7 and 8 as

well as the electron beam echo experiments described in

Ref. 15.

II. KINETIC CODE

A. Description of the numerical method

The 1d-1v kinetic code integrates the Vlasov–Poisson

system and has been extended to implement the Lenard-

Bernstein collision operator in this work

@f

@t
þ v

@f

@x
þ qE

m

@f

@v
¼ � @

@v
vf þ v2

th

@f

@v

� �
; (1)

r � E ¼ q

�0

ð1
�1
½f ðx; v; tÞ � fiðv; 0Þ�dv: (2)

Here f¼ f(x, v, t) is the electron distribution function,

fiðv; 0Þ is the spatially uniform ion background, m is the elec-

tron mass, vth is the electron thermal velocity, � is assumed

to be a constant collision frequency, E is the self-consistent

electric field, and �0 is the permittivity of free space.

The system is typically initialized with a Maxwellian

distribution, Eq. (3). At t¼ 0, this equilibrium is perturbed

by a sinusoidal perturbation, Eq. (4)

f ð0Þðx; vÞ ¼ n0ffiffiffiffiffiffi
2p
p

vth

e
� v2

2v2
th ; (3)

f ð1Þðx; vÞ ¼ � sinðkxÞf ð0Þðx; vÞ; (4)

which corresponds to a perturbed electric field

Eð1ÞðxÞ ¼ � en0

�0k
cosðkxÞ: (5)

Here � is a positive constant, measuring the size of the initial

perturbation.

The kinetic code employs a numerical method similar to

the one proposed by Schumer and Holloway,16 though it

uses a finite difference scheme in space rather than a Fourier

spectral method. The spatial boundaries are periodic. The

code uses the split-step method of Schumer and Holloway

with a 4th order Runge-Kutta method as the time integrator.

For the velocity-dependent part of the distribution function,

we choose the symmetrically weighted Hermite functions as

a spectral basis, defined as

wnðvÞ ¼ wnðvÞ ¼ Cne�v2=2HnðvÞ; (6)

where HnðvÞ is the nth Hermite polynomial and Cn ¼ p�1=4

ð2nn!Þ�1=2
is a normalization constant. These functions are

orthonormal and satisfy the following recursion relations:

vwnðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
wnþ1 þ

ffiffiffi
n

2

r
wn�1ðvÞ; (7)

d

dv
wnðvÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
wnþ1 þ

ffiffiffi
n

2

r
wn�1ðvÞ: (8)

Following Ref. 16, these recursion relations are used to

numerically implement the l.h.s. of Eq. (1). The spatial deriva-

tive is generally implemented using 2nd order central differ-

ence, and the Poisson equation is solved by inverting a
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tri-diagonal matrix. However, for the simulations in this work,

we used the linear, single-mode option of the code, which

implements spatial derivatives exactly by multiplication with ik.

B. Implementation of the Lenard-Bernstein collision
operator

The Lenard-Bernstein collision operator4 comes from

the full Fokker-Planck operator by linearizing and then

assuming constant collision frequency, and single spatial,

and velocity dimensions. Its effect is to relax a non-thermal

distribution function to a Maxwellian with a prescribed ther-

mal velocity. It is known to conserve particle number and for

non-drifting distribution functions, momentum. These colli-

sions have been implemented in the kinetic code by exploit-

ing the recursion relations, Eqs. (7) and (8).

Given a representation of the distribution function

expanded in symmetrically weighted Hermite functions and

leaving out the spatial and temporal dependence for brevity,

f ðvÞ ¼
X1
n¼0

fmwnðvÞ; (9)

the right hand side of Eq. (1) is expanded and Eqs. (7) and

(8) are applied.

LB � � @
@v

vf þ v2
th

@f

@v

� �
;

¼ �
X1
n¼0

fm
@

@v

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
ð1� v2

thÞwnþ1 þ
ffiffiffi
n

2

r
ð1þ v2

thÞwn�1

" #
;

¼ �
X1
n¼0

fm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
2

ð1� v2
thÞwnþ2

"

þ nþ 1

2
ð1� v2

thÞ �
n

2
ð1þ v2

thÞ
� �

wn

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
2

ð1þ v2
thÞwn�2

#
: (10)

Expanding the l.h.s. as well,

LB ¼
X1
n¼0

LBnwnðvÞ; (11)

and matching coefficients on both sides, we find the algo-

rithm implemented in the code

LBn ¼ �
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn

p
2

ð1� v2
thÞ

þ 1

2
� 2nþ 1

2
v2

th

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
2

ð1þ v2
thÞ
�
:

(12)

C. LB operator test: Thermalization of a non-thermal
distribution

The LB collision operator thermalizes non-Maxwellian

distribution functions. Here, we demonstrate how our imple-

mentation in the kinetic code exhibits this behavior.

We start with a filamented perturbed Maxwellian initial

condition for the distribution function f ¼ f ðv; tÞ

f ðv; 0Þ ¼ ð1þ � cos KvÞ 1ffiffiffiffiffiffi
2p
p

vth

e
� v2

2v2
th : (13)

Figure 1 shows the temporal evolution of the distribu-

tion function computed by the kinetic code, where we chose

� ¼ 0:3, K¼ 3, vth ¼ 3, and � ¼ 0:01. It can be clearly seen

how the oscillatory perturbation gets rapidly damped and the

system evolves to a Maxwellian distribution with width vth.

D. Effects of collisions on numerical recursion

Eulerian Vlasov solvers are limited numerically by

velocity-space filamentation of the distribution function. In

the absence of collisions, velocity shearing in phase space

occurs inevitably due to the free-streaming or ballistic

motion of the particles, represented by the first two terms in

the left-hand-side of Eq. (1).17–20

This standard phenomenon is illustrated in Fig. 2. We

begin at (a) t¼ 0 showing the initial perturbation in the dis-

tribution function f1 (see, Eq. (4)). A little while later, in (b),

particles with large velocities will have moved further in

space than those with smaller velocities. At a later time in

(c), the distribution function consists of fine filaments in ve-

locity space. In the collisionless Vlasov-Poisson system,

there is no mechanism to suppress the increasingly fine fila-

mentation, so eventually the velocity scales fall below the

grid size, leading to the well-known phenomenon of numeri-

cal recursion. In the context of the present method, one can

postpone this time by increasing resolution or, to some

extent, by rescaling the velocity space basis function, as dis-

cussed at length in Ref. 16.

Figure 3 demonstrates the consequence of numerical

recursion: The electric field in the collisionless run (thin

line) follows the exponentially damped standing wave cor-

rectly initially, but recursion occurs at t � 150 where the

FIG. 1. Evolution of non-Maxwellian distribution function in the collisional

Vlasov-Poisson system. Shown is the distribution function f(v) as a function

of velocity at the initial time t¼ 0 (dashed), at an intermediate time t¼ 2

(dotted), where the oscillations have already strongly damped, and at t¼ 20

(solid), where the system has fully relaxed to a Maxwellian distribution.
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simulated electric field shows erroneous behavior. The same

plot demonstrates that a small collisionality of � ¼ 10�4 is

sufficient to avoid numerical recursion, so that the exponential

decay continues. It should be noted that while the initial evo-

lution is the same in both cases, in the collisional case, the

least damped collisional eigenmode eventually dominates as

other modes in the initial condition decay away, which, by vir-

tue of being an eigenmode, does not exhibit any further steep-

ening of the velocity space gradients. Figure 4 shows the

structure of this eigenmode.

To more closely investigate the occurrence of recursion

in Vlasov solvers and its suppression by the Lenard-

Bernstein collision operator, it is instructive to consider the

free-streaming approximation to the Vlasov equation

@f

@t
þ v

@f

@x
¼ � @

@v
vf þ v2

th

@f

@v

� �
: (14)

Setting the collision frequency � to zero for the moment,

the equation is easily integrated along its characteristic, and

in particular for a typical perturbation with wave number k
in position space and Maxwellian distribution in velocity

space f ðx; v; 0Þ ¼ ak cosðkxÞexpð�v2=ð2v2
thÞÞ, we find the

solution

f ðx; v; tÞ ¼ f ðx� vt; v; 0Þ ¼ ak cos kðx� vtÞ e
� v2

2v2
th : (15)

Taking a cut in velocity space at an arbitrary location x0,

we see that the distribution function now has an oscillatory

dependence / cosðktvÞ on v in addition the Maxwellian en-

velope, similar to our test initial condition in Fig. 1. The pe-

riod in v-space, 2p=ðktÞ, decreases in time, and it is clear that

the oscillation will become unresolved as we resolve a single

cosine period with less than 4 points in v space

2p
ksrecur

¼ 4Dv) srecur ¼
p

2kDv
: (16)

As the width of Hermite functions is approximately the

square root of their order, the resolution of our velocity-

scaled basis functions is Dv � U
ffiffiffiffi
Nu

p

Nu
, hence we obtain the

recursion time as in Ref. 16

srecur �
p
ffiffiffiffiffiffi
Nu

p

2kU
: (17)

We performed a number of runs varying the velocity

space resolution Nu from 64 through 2048 and determined

the recursion times. Figure 5 confirms the expected N1=2
u

scaling of the recursion time.

FIG. 2. Evolution of the perturbed distribution function f1. As indicated in

(a) by the arrows, different parts of the distribution function will move at

their own velocity, leading to the distribution function being sheared and

formation of filaments as shown at later times in (b) and (c).

FIG. 3. Evolution of electric field in the collisionless case (� ¼ 0, light line),

showing numerical recursion at t � 180 x�1
pe and suppression of the recur-

sion by collisionality � ¼ 10�4 (thick line).

FIG. 4. Structure of the late-time perturbed distribution function f1 in the

collisional case, � ¼ 10�4. The initial evolution is virtually identical the col-

lisionless evolution shown in Fig. 2, but at late time (shown is t ¼ 253 x�1
pe ),

the system has evolved into the least-damped collisional eigenmode.
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While recursion at a finite time is unavoidable for nu-

merical solutions of collisionless Vlasov-Poisson system, Ng

et al.9 showed that the character of the solutions changes

fundamentally in the presence of collisions. In particular, the

Landau damped solutions are transformed into actual

eigenmodes, which as such remain unchanged during the

temporal evolution, instead of becoming more and more os-

cillatory in velocity space. It is, therefore, expected that the

numerical solver can follow the time evolution for long

times, the phenomenon of recursion should disappear given

sufficient resolution.

Turning back to Eq. (14), the initial evolution of the sys-

tem at finite but small collisionality l will be virtually identi-

cal, since the initial Maxwellian profile does not have large

gradients, so the collisional terms on the right hand side are

small. As time goes on, we again get the filamentation, lead-

ing to growing gradients in velocity space. Eventually, the

collisional terms becomes important and serves to suppress

growth of even higher modes, the dissipative term

�v2
th @

2f=@v2 making the most important contribution. Substi-

tuting in our previously obtained free-streaming solution for

f (Eq. (15)) and postulating that the collisional term quenches

further filamentation once its contribution is comparable to

the decay rate jcj, we find

scoll �
ffiffiffiffiffi
jcj
�

r
1

ðkvthÞ2
: (18)

Recursion is prevented if further filamentation is sup-

pressed before the recursion time, i.e., scoll < srecur. To test this

criterion, we solve for the minimum collision frequency needed

to prevent recursion given a velocity space resolution Nu

�norecur �
ð2kUÞ2c

p2ðkvthÞ4Nu

: (19)

Figure 6 shows the collision frequency � needed to

avoid the recursion previously observed in the collisionless

system. It confirms the expected N�1
u scaling.

E. Kinetic code verification

We have benchmarked the collisionless version of the

kinetic code with roots of the plasma dispersion relation

from a solver written by Ng (referred to hereafter as the

plasma dispersion function (PDF) solver). The relevant dis-

persion equation is

1þ að1þ XZðXÞÞ ¼ 0; (20)

where a ¼ x2
p=ðkvthÞ2;X ¼ x=ð

ffiffiffi
2
p

kvthÞ, and ZðXÞ is the

plasma dispersion function. As shown in Fig. 7, very good

agreement is found between the kinetic code and the PDF

solver.

We have also performed benchmarks of the damping of

collisional Langmuir waves with the kinetic code. Table I

shows that the damping rate matches the NBS eigensolver

predictions. In the long-wavelength approximation, the

eigenfrequencies, X, take the form

FIG. 5. Numerical recursion time srecur as a function of velocity space reso-

lution Nu. The observed recursion times compare well to the model srecur

� p
ffiffiffiffiffiffi
Nu

p
=ð2kUÞ. Parameters were k ¼ 1; vth ¼ 1=3; and U ¼ :5vth.

FIG. 6. Collisionality �norecur required to prevent recursion as a function of ve-

locity space resolution Nu. Parameters were k ¼ 1; vth ¼ 1=3; and U ¼ :5vth.

FIG. 7. The Langmuir dispersion relation. The upper plots show the fre-

quency of oscillation normalized by plasma frequency. The lower plot shows

the damping rate normalized by plasma frequency. “PDF root” is the roots

from the plasma dispersion function solver. “Code root” is the result from

the kinetic code.
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X ¼ X0 þ X1l; (21)

where

X1 ¼
iX2

0
1
3a� 1

3
þ 1

a

� �
1

2X2
0

h i
� 1

aþ 1þ 1
a

� �
1

2X2
0

: (22)

Table II shows the comparison between the numerical

results obtained by NBS, and the correction formulae (21)

and (22).

III. NBS EIGENMODE STUDY

This section contains tests of the NBS eigenmodes.

First, orthogonality of the modes is examined analytically

and numerically. Next, we show that the NBS eigenmodes

behave in the collisional Vlasov-Poisson system as pre-

dicted. Finally, we present some evidences that are not con-

sistent with the property of completeness. (For numerical

reasons, discussed below, we are not able to test the com-

pleteness property definitively.)

A. Orthogonality

NBS9 renormalized and Fourier-transformed the distri-

bution function f in space and time, and recast the collisional

Vlasov-Poisson system, Eqs. (1), in terms of a normalized

distribution function g(v)

ðu� XÞg� g
ð1
�1

gðu0Þdu0 ¼ �il
d

du
ugþ 1

2

dg

du

� �
; (23)

where u � v=ð
ffiffiffi
2
p

v0Þ;gðuÞ �
ffiffiffi
2
p

v0f=n0;g0 � expð�u2Þ=
ffiffiffi
p
p

,

n0 is the equilibrium electron density, gðuÞ � a=2dg0=du,

and l � �=ð
ffiffiffi
2
p

kv0Þ. This is an eigenmode equation with sol-

utions gm belonging to complex eigenfrequencies Xm. NBS

found the corresponding adjoint equation and showed that its

adjoint solutions Gm are related to the eigenfunctions gm by

GnðuÞ / gnðuÞeu2 þ affiffiffi
p
p
ð1
�1

gnðu0Þdu0: (24)

By construction, Gn and gm belonging to different eigenfre-

quencies Xn;Xm are bi-orthogonal, that is,ð1
�1

GnðuÞgmðuÞdu ¼ 0: (25)

This condition allows us to determine the expansion

coefficients cn for expanding an arbitrary function gðuÞ
¼
P1

m¼0 cmgmðuÞ in terms of eigenfunctions gm, after the Gm

are appropriately normalized

cm ¼
ð1
�1

GmðuÞgðuÞdu: (26)

We have confirmed numerically bi-orthogonality for a

number of eigenfunctions obtained by the method described

in Ref. 9. The eigenfunctions are provided as a set of Her-

mite expansion coefficients famng such that

gmðvÞ ¼
X1
n¼0

amnCnHnðvÞe�v2

; (27)

where Cn ¼ 1=ðp1=4
ffiffiffiffiffiffiffiffi
2kk!
p

Þ. We express the adjoint function

Gm in terms of Hermite polynomials, too, but without the

weight function e�v2

to enable us to use the orthogonality

property of Hermite polynomials to evaluate integrals. We

write

GmðvÞ ¼
X1
n¼0

AmnCnHnðvÞ: (28)

Substituting the expansions for Gn and gn into Eq. (24), mul-

tiplying by CmHmðuÞexpð�u2Þ, and integrating over u in the

usual manner, we determine the coefficients Anm

Anm ¼ bn½anm þ a an0dm0�: (29)

Since
Ð1
�1 gnðuÞdu ¼ p1=4an0. The bn are yet undetermined

normalization constants. For any function g(u) expanded in

Hermite functions, gðuÞ ¼
P1

n¼0 anCnHnðuÞexpð�u2Þ, we

can perform a change of basis to find its coefficients fcmg for

an expansion in collisional eigenfunctions

cm ¼
ð1
�1

GnðuÞgðuÞdu (30)

¼
X1
k¼0

Ankak ¼ bn

�
ð1þ aÞ an0a0 þ

X1
k¼1

ankak

�
: (31)

The normalization coefficients can now be determined

by plugging in gn for g, for which we require

1 ¼
ð1
�1

Gngndu;¼ bn

�
ð1þ aÞa2

n0 þ
X1
k¼1

a2
nk

�
; (32)

TABLE I. NBS benchmark of kinetic code. Damping rates for various colli-

sion frequencies, l, recovered from fitting simulation results, compared to

those predicted by the NBS eigenmode solver.

l Xi NBS Xi Kinetic code Relative error

0 �0.0548864 �0.0549166 5:50� 10�4

0.00001 �0.0548937 �0.0549240 5:52� 10�4

0.0001 �0.0549601 �0.0549904 5:51� 10�4

0.001 �0.0556237 �0.0556539 5:43� 10�4

0.01 �0.0622458 �0.0622758 4:82� 10�4

0.1 �0.1270101 �0.1269715 3:04� 10�4

TABLE II. NBS modesolver damping rates compared with the correction

formulae, Eqs. (21) and (22).

a l Xi NBS Xi Correction formula Relative error

4.0 0.01 �0.22254755 �0.22253905 0:96565� 10�5

5.0 0.01 �0.17044662 �0.17044252 0:97423� 10�5

9.0 0.1 �0.12701015 �0.12863040 0:96470� 10�3

20.0 0.1 �0.06674260 �0.68091868 0:55108� 10�3

25.0 0.1 �0.06149031 �0.61999834 0:35246� 10�3
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) bn ¼
�
ð1þ aÞa2

n0 þ
X1
k¼1

a2
nk

��1

: (33)

Table III shows an example calculation where we have

calculated and normalized the adjoint functions Gn and

checked that the resulting functions are in fact bi-orthogonal.

It is evident that the numerical eigenfunctions exhibit large

and rapid oscillations near the phase speed of the wave,

which makes it numerically challenging to determine them

to very high accuracy.

B. Structure of the eigenmodes

The NBS eigensolver identified the least damped mode

(LDM) and 4 further modes for l ¼ 0:1. The complex eigen-

frequencies are given in Table IV.

Figure 8 shows the time evolution of Vlasov simulations

initialized with eigenmodes found by the NBS eigensolver

for l ¼ 0:1. Indicated are the electric field (symbols) and

least square fits to the exponential decay part of the evolution.

It can be clearly seen that all modes initially show exponen-

tial decay as expected for an eigenmode, and examination of

the full distribution function output confirmed this, as well.

For all modes other than the LDM, the exponential decay

eventually breaks down and we see further slow decay at the

growth rate of the LDM.

We compare the growth rates found from the Vlasov

simulations to the imaginary part of X calculated by the

eigensolver in Table. IV. The Vlasov code clearly captures

the temporal evolution of the eigenmodes to high accuracy

in the initial phase of the simulations.

The reason why the higher modes seemingly cease to

evolve according to their linear dynamics can be understood

better by considering the shape of the eigenfunctions in ve-

locity space, as plotted in Fig. 9. All the eigenfunctions gm

are normalized with respect to their zeroth moment, i.e.,Ð1
�1 gmðvÞdv ¼ 1, hence they all contribute equally to the

charge density and also the electric field. In particular, while

all the modes in Fig. 8 start at the same value of the electric

field, the distribution function g4 of mode 4 is actually up to

106 times larger than the distribution function of the least

damped mode gLDM. Due to numerical discretization error,

the initial mode 4 is not exact, but contains small contribu-

tions from other modes, in particular the least damped mode.

An LDM error component of 10�6 of the magnitude of mode

4 would create an error in the electric field of order unity

already. While the initial LDM error component is actually

smaller, about 10�10, it decays away much slower than the

main mode, so eventually the electric field contributed by

this small component overwhelms the electric field of the

main mode and shows up as the slowly decaying evolution

after the initial exponential phase. It should be noted that the

structure of the eigenmodes is numerically rather challeng-

ing—they contain large oscillatory components that almost

cancel out as one integrates over v-space, which leads to a

significant loss of precision when performed in floating point

arithmetic.

C. Decomposition into eigenmodes

Our goal in this work is to analyze simulation results by

decomposing the plasma evolution into a linear combination

of eigenmodes, which all evolve according to their eigenfre-

quencies, explaining the dynamics of the system as interfer-

ence of those eigenmodes. In order to test our method, we

have performed a simulation that starts with a superposition

of 5 modes, all them equally weighted with cm ¼ 0:2.

TABLE III. Numerical confirmation of the orthonormality of the NBS eigenmodes. Shown is
Ð

Gngmdu for least damped mode and modes 1 to 4 for l ¼ 0:1.

nnm LDM 1 2 3 4

LDM 1 6.6788� 1014 2.4654� 1010 4.3470� 107 3.3390� 105

1 1.0726� 1014 1 1.9583� 109 2.5373� 106 1.6947� 104

2 2.1735� 1011 1.0749� 109 1 6.8720� 106 3.4759� 104

3 2.6671� 108 9.6933� 107 4.7828� 106 1 7.6067� 104

4 1.5850� 106 5.0094� 105 1.8717� 104 5.8853� 104 1

TABLE IV. Growth rates of the collisional eigenmodes at l ¼ 0:1, showing

that the results of the Vlasov code agree very well with the eigenvalues

found by the NBS solver.

Mode Xi NBS Xi Vlasov code Relative error

LDM �0.12701014 �0.12700989 1:97� 10�6

1 �1.63253445 �1.63253647 1:24� 10�6

2 �2.44408929 �2.44409574 2:64� 10�6

3 �3.06241689 �3.06242860 3:83� 10�6

4 �3.58772051 �3.58797131 6:99� 10�5

FIG. 8. Time evolution of the k¼ 1 component of the electric field for sepa-

rate simulations initialized with LDM and modes 1 to 4, l ¼ 0:1. Solid lines

show the best fit to the exponential decay phase.
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Figure 10 should be compared to Fig. 8, only that this time

we perform a single simulation evolving all 5 modes at

once; and instead of focusing on the electric field, we

decompose the distribution function back into its eigen-

mode basis coefficient cnðtÞ. We reproduce fundamentally

the same behavior, as one would expect for a linear sys-

tem, but with some caveats. LDM and modes 1 and 2

show the same evolution as before. Mode 3 turns over into

the LDM behavior at an early point, while mode 4 shows

bleeding from other modes right away and is, therefore, not

plotted. The main reason for the additional numerical diffi-

culty lies in the fact that the numerical modes are not

exactly orthogonal, as previously shown in Table III, which

makes it impossible to obtain an exact decomposition. In

addition, the eigenmodes and orthogonality relations are

written for modes expanded of asymmetrically weighted

Hermite functions, while the kinetic code uses symmetri-

cally weighted polynomials, incurring additional conver-

sions when setting up the initial conditions and analyzing

distribution functions. In fact, the eigenmodes are so sensi-

tive to small numerical errors that 64-bit floating point pre-

cision turned out to be insufficient to maintain even the

already limited orthogonality under conversion between the

bases. We have hence implemented the conversion routines

in high-precision arithmetic using the MPMATH PYTHON

module.21

D. Collisional Landau damping of a standing wave

We now analyze the temporal evolution of a standing

Langmuir wave in the presence of collisions.

The electric field, as shown in Fig. 11, shows the

expected standing wave oscillation, enveloped by exponential

decay at the expected growth rate from the least damped

mode. The composition of the initial Maxwellian into LDM

and modes 1 to 4 is also shown, and those components

behave similarly to the test case where we used an equally

weighted superposition of modes as initial condition. Modes

1 to 4, as expected, show rapid exponentially decay, leaving

only the least damped mode to support the observed total

electric field. The evolution, in fact, looks quite similar to our

synthetic test initial condition, where we superposed 5 modes

with equal weights, which subsequently decayed at their re-

spective growth rates. In particular, the turning over of the

fast exponential decay for the higher modes into slower decay

at LDM rate is just the previously described numerical arti-

fact. Our simulations also explain why the first “bump” in the

electric field is higher than the exponential fit would have us

expect, a phenomenon also observed in collisionless simula-

tions, e.g., Ref. 16. Landau damping describes the late time

evolution of the electric field, however, there is an initial tran-

sient phase. In the context of the collisional system, the tran-

sient phase can be explained in terms of the additional modes,

which contribute to the initial condition. These modes also

carry electric field, which explains the initially higher values,

however, as they rapidly decay away, their contribution

becomes insignificant quickly and the evolution of the electric

field is well described by just the least damped mode itself.

FIG. 10. Evolution of a superposition of LDM and modes 1 to 4, initially

weighted equally with coefficient 0.2.

FIG. 11. Simulation initialized with a standing Langmuir wave, shown is the

electric field E and the magnitude of the decomposition coefficients jcnj vs

time.

FIG. 9. Real part of the collisional eigenfunctions gmðvÞ shown on a semi-

logarithmic scale. Solid lines indicate positive values, while dashed lines

indicate negative values. Collisionality is l ¼ 0:1. Note that the maximum

amplitude of the modes grows with mode number. In the plot here, the gLDM

has the lowest maximum amplitude and g3 has the largest.
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E. Completeness

The NBS modes were shown to be a complete set of

eigenmodes by Ref. 10. First, we will examine the complete-

ness problem by using numerically constructed linear

eigenmodes from the method described in Sec. III A at the

end of Sec. III D. Using this method, an eigenmode gmðvÞ is

expanded in the form

gmðvÞ ¼
X1
n¼0

amnHnðvÞe�v2

; (34)

based on normalized variables. Numerically, of course, the

summation over n can only be done up to a finite number of

modes number, say nmax, since only a finite number of amn

can be calculated. In the same way, the adjoint function cor-

responding to gmðvÞ can be obtained

GmðvÞ ¼
X1
n¼0

AmnHnðvÞ: (35)

The orthonormal condition requiresð1
�1

gmðvÞGnðvÞdv ¼ dmn; (36)

or

X1
l¼0

amlAnl ¼ dmn: (37)

In other words, the transpose matrix AT is the right inverse

of the matrix a. Numerically, this relationship can be con-

firmed to a high accuracy by including enough modes in the

summations in Eqs. (34) and (35), i.e., with a large enough

nmax.

Using the same formulation, the completeness condition

then requires

X1
m¼0

gmðvÞGmðv0Þ ¼ dðv� v0Þ (38)

or

Cpq �
X1
m¼0

ampAmq ¼ dpq: (39)

In other words, the transpose matrix AT is also the left

inverse of the matrix a, or that a is invertible. Again, numeri-

cally, we can only sum up a finite number of terms in Eq.

(39), or that m can only take up to mmax, the number of

eigenmodes that can be evaluated accurately.

Unlike the orthonormal condition, Eq. (37), the com-

pleteness condition, Eq. (39), is much more difficult to test

numerically. This is because the eigenmode gmðvÞ gets more

and more singular in the v space for larger m, and thus is

more and more difficult to be expanded accurately in the

form of Eq. (34) for a given finite number of terms, nmax. In

other words, the number of eigenmodes, mmax, that can be

calculated accurately is not large enough. As a matter of fact,

this is much more so for the temporal problem than the spatial

problem. When mmax is not too large, there are enough terms

in the sum in Eq. (39) to get to converged values.

Facing this great difficulty, one way to proceed in order

to at least testing the numerical framework, rather than study-

ing physically interesting cases, is to consider the spatial

problem when the collision is strong. This is because gmðvÞ is

more singular, i.e., with very fine structures in the v space

with very small widths in the small l limit. In the case of

large l, the eigenmodes are smooth enough in the v space

that a large mmax of eigenmodes can be calculated accurately.

As an example, we show in Table V, some results of the

calculation of Cpq as defined in Eq. (39) for the first few val-

ues of p and q, for the case with l ¼ 1; a ¼ 0:1;mmax

¼ 5020; and nmax ¼ 21 600. We see that generally these

values of Cpq differ from the expected value of dpq in the

order of Oð10�2Þ. Note that Cpq is identically zero by sym-

metry if p and q are not both even or both odd. The reason

we cannot get even better agreement is again because of a fi-

nite mmax that can be calculated. In fact, in the calculation of

each Cpq, the trend in convergence is not consistent with the

theoretical expectation, although the rate of convergences

appears to be quite slow.

IV. CONCLUSION

In this paper, we report results from a kinetic Eulerian

code in 1d-1v space that includes the Lenard-Bernstein colli-

sion operator. Some standard tests of the code are given. We

have shown that a non-thermal distribution is thermalized by

the LB operator. We have examined the effect that collisions

have on numerical recursion. Significantly, we have bench-

marked the code with the NBS modes.

We have discussed in detail our efforts in testing the

orthogonality and completeness relation of NBS eigenmo-

des. The numerical challenges in providing definitive tests

are quite formidable, but we have presented some evidence

in support of these properties.

TABLE V. Numerical test of completeness.

p q Cpq

0 0 0:99999925þ 0:011i

1 1 1:0000007� 7:1� 10�7i

0 2 0:016� 0:008i

2 0 1:1� 10�6 � 0:008i

2 2 0:989� 0:0056i

1 3 �3:4� 10�6 � 9:2� 10�7i

3 1 �1:5� 10�6 þ 2:6� 10�7i

0 4 �0:028þ 0:0069i

4 0 �2:6� 10�6 þ 0:0069i

3 3 1:000003þ 3:9� 10�6i

0 6 0:038� 0:0063i

6 0 5:0� 10�6 � 0:0063i

2 4 0:0195� 0:0049i

4 2 0:0098� 0:0049i

1 5 6:5� 10�6 þ 5:8� 10�6i

5 1 2:3� 10�6 þ 3:9� 10�7i
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